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Two-patch analysis15

We first made the following assumptions:16

1. Each patch has identical parameters, with the exception of the ratio of mosquitoes to humans m1 and17

m2.18

2. m̄ := m1+m2

2 , the average of m1 and m2, is fixed.19

3. ᾱ := m1

m2
, where, without loss of generality, m1 > m2 so that α ∈ (1,∞).20

Theorem 0.0.1. Under the above assumptions, R0 is an increasing function of the variance

V =
(m1 − m̄)2 + (m2 − m̄)2

2
.

Proof. Note that
∂R0

∂V
=
∂ᾱ

∂V
· ∂R0

∂ᾱ
. We will first show that

∂R0

∂ᾱ
> 0.21

Assumptions 2 and 3 imply that22
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(m1,m2) =

(
2ᾱm̄

ᾱ+ 1
,

2m̄

ᾱ+ 1

)
. (1)

Using the definition of R0 described in the previous section, it is straightforward to show that R0 for

our two-patch system is a special case of the R0 derived in [1]. In [1],

R0 =
1

2σ

(
s1t2 + s2t1 +

√
(s1t2 + s2t1)2 − 4s1s2σ

)
,

where σ = k12r1 +k21r2 +r1r2, si = αiβi

gi
, and ti = ri+kji. Since all patch parameters, except for m1 and23

m2 are identical in this manuscript, we take k = k12 = k21, r = r1 = r2, β = β1 = β2, and g = g1 = g2.24

Subsequently, we have σ = 2kr + r2, si = αiβ
g , and t = r + k = t1 = t2.25

Note that s1t2 + s2t1 = s2t2

(
s1

s2
+
t1
t2

)
= s2t2(ᾱ+ 1). So, R0 =

s2t

2σ

(
ᾱ+ 1 +

√
(ᾱ+ 1)2 − 4ᾱ

σ

t2

)
.26

Recall that s2 = m2η, where η = a2bce−gn/g (under the simplifying parameter assumptions). From

the expression for m2, we obtain s2 =
2ηm̄

ᾱ+ 1
, which yields (after simplification) an expression for R0 as

a function of ᾱ:

R0(ᾱ) = ηm̄
t

σ

(
1 +

√
1− 4

ᾱ

(ᾱ+ 1)2
· σ
t2

)
.

Now, it remains to show that
∂R0

∂ᾱ
> 0 on (1,∞). Only the argument of the square root in R0 depends27

on ᾱ. Thus, to determine the sign of
∂R0

∂ᾱ
, we first note that

∂

∂ᾱ

(
ᾱ

(ᾱ+ 1)2

)
=

1− ᾱ
(ᾱ+ 1)3

< 0 on (1,∞).28

From this, it is clear that R0 is an increasing function of ᾱ.29

We conclude the proof by writing V as a function of ᾱ, and illustrating that
∂ᾱ

∂V
is also positive.

Substituting Equation (1) into the expression for the two-patch variance V , we find that V (ᾱ+ 1)
2

=

m̄2(ᾱ− 1)2. Implicit differentiation with respect to V , and treating ᾱ as a function of V , yields:

∂ᾱ

∂V
=

(ᾱ+ 1)3

4m̄2(ᾱ− 1)
,

which is positive. In the above calculation, we used the fact that V (ᾱ+ 1)
2

= m̄2(ᾱ − 1)2 to write the30

expression in terms of only m̄ and ᾱ. Consequently, R0 is an increasing function of V .31

32

Proposition 0.0.2.
∂

∂k

∂R0

∂ᾱ
< 0.33
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Proof. Calculating R′0(ᾱ) explicitly, we obtain: R′0(ᾱ) = 2ηm̄

(
1− 4

ᾱ

(ᾱ+ 1)2
· σ
t2

)− 1
2

· ᾱ− 1

(ᾱ+ 1)3
· 1

t
.34

Clearly,
∂

∂k

(
1

t

)
< 0 since t = r + k, and

∂

∂k

( σ
t2

)
= − 2rk

(r + k)3
< 0. Since 1/t and σ/t2 are both35

decreasing functions of k and no other terms in
∂R0

∂ᾱ
depend on k, we observe that

∂R0

∂ᾱ
must decrease36

with k.37

38

Theorem 0.0.3. The total equilibrium prevalence in the two-patch system, I∗ = I∗1 + I∗2 is an increasing39

function of the variance V .40

Proof. The equilibrium equations for our two-patch system are

0 = ac
Ii
N

(e−gn − zi)− gzi, i = 1, 2

0 = miabzi(N − Ii)− rIi − kIi + kIj , i = 1, 2

Solving for zi in the first equation and substituting this quantity into the second equation, we obtain the

equilibrium equations

0 =
mia

2bce−gn

acIi + gN
(N − Ii)− (r + k)Ii + kIj , i = 1, 2,

which is a special case of the equilibrium equations in [1].41

From equations (33)-(34) in [1],

∂I∗1
∂α1

= − Cα1
A2

A1A2 −B1B2
(2)

∂I∗2
∂α1

=
Cα1

B2

A1A2 −B1B2
, (3)
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where

Ai = αiβ(N∗i − 2I∗i )− t(2βI∗i + gN∗i ) + kβI∗j

= αiβ(N − 2I∗i )− t(2βI∗i + gN) + kβI∗j

Bi = k(βI∗i + gN∗i )

= k(βI∗i + gN)

Cα1
= βI∗1 (N∗1 − I∗1 )

= βI∗1 (N − I∗1 )

Recall that α1 = m1abe
−gn = 2ᾱm̄

ᾱ+1 abe
−gn.42

This fact, along with equations (2)-(3), implies that

∂I∗

∂ᾱ
=
∂α1

ᾱ

∂I∗

∂α1
=

2m̄abe−gn

(ᾱ+ 1)2
· Cα1

(B2 −A2)

A1A2 −B1B2
.

Proposition 5.0.1 in [1] states that A1A2 − B1B2 > 0, and the proof of this proposition states that43

A2 < 0. Thus, B2 − A2 > 0 implies that ∂I∗

∂ᾱ > 0. Recall that in the proof of the previous theorem, we44

showed that ∂ᾱ/∂V > 0; consequently, I∗ is an increasing function of the variance V .45

46
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